TALK=T;RUN( 1, 5)
** LOAD(859) from the PHOENICS Input Library
Echo DISPLAY / USE settings
DISPLAY
The purpose of creation of this case is a demonstration
of transfer objects feature.
This example explores the unsteady distribution of pollution
on a reasonably large region of ground.
The pollution source is set in the west-low corner and
acts only at the first time step. Further the pollution
cloud will be distributed by wind.
Use of transfer objects permits the calculation of unidirectional
flow on small parts one after another. The solved area in this
example is divided into four parts. The solution in each part is
made in separate runs.
---------------------
! ! !
! ! !
! 3rd run ! 4th run !
! ! !
W1 ! ! !
--> ----------+----------
! ! !
! ! !
! 1st run ! 2nd run !
! ! !
X ! ! ! !
! ---------------------
! ^
!----- Z /!\
!
!U1
The HTR$
O1.. and ETRO1.. transfer objects on the high
and east boundaries are formed at the end of each time step of the
first run by means of two '(export' In-Form statements. They store
the values of outlet mass flux and concentration on these
boundaries in order to transfer them to the second and third runs.
The second run reads the information at the low boundary from the
HTRO1..$
objects at the start of each time step by means of '(import
In-Form statements and at the end of each time step dumps it at
the east boundary in the ETRO2 object.
The third run reads from the ETRO1 object and writes from the
HTRO3$
a> object.
The fourth run reads the information from HTRO3 and ETRO2
import transfer objects at the low and west boundaries.
The wind profile at the inlet boundaries is set by means of
In-For$
m statements as a logarithmic velocity profile.
The ground relief (HIG variable) is calculated by an
I$
n-Form formula.
The MARK variable defined by In-Form is used for the
image of the ground relief in Photon.
The ground roughness is simulated by a change in air density
with height in an atmospheric layer. The density of the air is ca$
lculated
from a b$
arometric formula by means of In-Form.
The fifth and last run simulates the flow in the whole region
without partitioning. It will be useful to compare with the previ$
ous runs.
The Q1 contains PHOTON USE commands
ENDDIS
PHOTON USE
p
110
1 5 1;;
VI -1 1 1
gr ou y 1
SURF MARK Y .99
SURF MARK X .99
SURF MARK Z .99
msg First run: ground geometry
pause
p
110;;;
vi y
gr ou y 1
con rho1 y m fi;.001
msg density contours
pause
con cl;red
ve y 1 sh
msg velocity vectors
pause
con cl;red
set con scale range on
con conc y 1 fi;0 0.01;.001
set con scale range off
msg concentration contours
pause
p
210
1 5 1;;
VI -1 1 1
gr ou y 1
SURF MARK Y .99
SURF MARK X .99
SURF MARK Z .99
msg Second run: ground geometry
pause
p
210;;;
vi y
gr ou y 1
con rho1 y m fi;.001
msg density contours
pause
con cl;red
ve y 1 sh
msg velocity vectors
pause
con cl;red
set con scale range on
con conc y 1 fi;0 0.01;.001
set con scale range off
msg concentration contours
pause
p
310
1 5 1;;
VI -1 1 1
gr ou y 1
SURF MARK Y .99
SURF MARK X .99
SURF MARK Z .99
msg Third run: ground geometry
pause
p
310;;;
vi y
gr ou y 1
con rho1 y m fi;.001
msg density contours
pause
con cl;red
ve y 1 sh
msg velocity vectors
pause
con cl;red
set con scale range on
con conc y 1 fi;0 0.01;.001
set con scale range off
msg concentration contours
pause
p
410
1 5 1;;
VI -1 1 1
gr ou y 1
SURF MARK Y .99
SURF MARK X .99
SURF MARK Z .99
msg Fourth run: ground geometry
pause
p
410;;;
vi y
gr ou y 1
con rho1 y m fi;.001
msg density contours
pause
con cl;red
ve y 1 sh
msg velocity vectors
pause
con cl;red
set con scale range on
con conc y 1 fi;0 0.01;.001
set con scale range off
msg concentration contours
pause
p
510
1 5 1;;
VI -1 1 1
gr ou y 1
SURF MARK Y .99
SURF MARK X .99
SURF MARK Z .99
msg First run: ground geometry
pause
p
510;;;
vi y
gr ou y 1
con rho1 y m fi;.001
msg density contours
pause
con cl;red
ve y 1 sh
msg velocity vectors
pause
con cl;red
set con scale range on
con conc y 1 fi;0 0.01;.001
set con scale range off
msg concentration contours
ENDUSE
First run
---------
Group 1. Run Title and Number
TEXT(ATMOSPHERIC B.L., first run )
Group 1. T-Direction Grid Spacing
STEADY=F;GRDPWR(T,10,5.E3,1)
Group 3. X-Direction Grid Spacing
GRDPWR(X,20,5000,1)
Group 4. Y-Direction Grid Spacing
GRDPWR(Y,20,1000,2.0)
Group 5. Z-Direction Grid Spacing
GRDPWR(Z,20,5000,1)
Group 7. Variables: STOREd,SOLVEd,NAMEd
SOLVE(P1,U1,V1,W1,CONC)
STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1)
SOLUTN(P1,Y,Y,Y,N,N,Y)
TURMOD(KEMODL)
Group 9. Properties
PRESS0= 1.000000E+05; TEMP0= 2.730000E+02
SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm
DVO1DT= 3.410000E-03
PRT(EP)= 1.314000E+00
Group 11.Initialise Var/Porosity Fields
FIINIT(CONC)=0.0
Group 13. Boundary & Special Sources
! outlets
PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP)
COVAL(HOUT,P1,1.,0.)
PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP)
COVAL(EOUT,P1,1.,0.)
PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(NOUT,P1,1.,0.)
! pollution source
PATCH(SOURCE,CELL,1,7,1,1,1,4,1,1)
COVAL(SOURCE,CONC,FIXFLU,1.E5)
! ground bourndary
PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP)
COVAL(GROUND,U1,GRND5,0.)
COVAL(GROUND,W1,GRND5,0.)
COVAL(GROUND,KE,GRND5,GRND5)
COVAL(GROUND,EP,GRND5,GRND5)
WALLA = 2.000000E-02 ;WALLB = 0.000000E+00
EGWF = T
WALLCO = GRND5
!inlets by power-law form:Uy=Uh*(y/h)**alfa
REAL(VELX,VELZ,REFH,ALPHA,RHOIN)
REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH)
VELX=1.0 ! x component of inlet velocity
VELZ=1.0 ! z component of inlet velocity
REFH=10. ! reference height for wind reference velocity
ALPHA=0.21 !
RHOIN=RHO1 ! inlet density
AK=0.41 ! constant
ZO=0.022 ! effective roughness length
HO=0.0 ! height of boundary-layer origin above domain origin
VEL2=VELX*VELX+VELZ*VELZ
QREF=SQRT(VEL2) ! inlet velocity
RH=REFH/ZO
QTAU=AK*QREF/(LOG(RH))
QTAU2=QTAU*QTAU
GKEIN=QTAU2/0.3 ! inlet k
GEPCON=QTAU2*QTAU/AK
PATCH(LINLET,LOW,1,NX,1,NY,1,1,1,LSTEP)
CONST=RHOIN*ABS(VELZ)/REFH**ALPHA
(SOURCE of P1 at LINLET is CONST*YG^ALPHA)
CONST=VELX/REFH**ALPHA
(SOURCE of U1 at LINLET is CONST*YG^ALPHA with ONLYMS)
CONST=VELZ/REFH**ALPHA
(SOURCE of W1 at LINLET is CONST*YG^ALPHA with ONLYMS)
(SOURCE of KE at LINLET is GKEIN with ONLYMS)
(SOURCE of EP at LINLET is GEPCON/(YG-HO) with ONLYMS)
PATCH(WINLET,WEST,1,1,1,NY,1,NZ,1,LSTEP)
CONST=RHOIN*ABS(VELX)/REFH**ALPHA
(SOURCE of P1 at WINLET is CONST*YG^ALPHA)
CONST=VELX/REFH**ALPHA
(SOURCE of U1 at WINLET is CONST*YG^ALPHA with ONLYMS)
CONST=VELZ/REFH**ALPHA
(SOURCE of W1 at WINLET is CONST*YG^ALPHA with ONLYMS)
(SOURCE of KE at WINLET is GKEIN with ONLYMS)
(SOURCE of EP at WINLET is GEPCON/(YG-HO) with ONLYMS)
! initial by power-law form: Uy=Uh*(y/h)**alfa
PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1)
CONST=VELX/REFH**ALPHA
(INITIAL of U1 at INIT is CONST*YG^ALPHA)
CONST=VELZ/REFH**ALPHA
(INITIAL of W1 at INIT is CONST*YG^ALPHA)
(INITIAL of KE at INIT is GKEIN)
(INITIAL of EP at INIT is GEPCON/(YG-HO))
REAL(XSIZE,ZSIZE,X0,Z0)
XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area
X0=0; Z0=0 ! coordinates of origin on explored area
! ground relief
(STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($
2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR)
! geometry marker
(STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR)
! air density
(PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000)))
! create export transfer objects
DO II=1,LSTEP
PATCH(HPAT:II:,HIGH,1,NX,1,NY,NZ,NZ,:II:,:II:)
(EXPORT in HTRO1:II: at HPAT:II:)
PATCH(EPAT:II:,EAST,NX,NX,1,NY,1,NZ,:II:,:II:)
(EXPORT in ETRO1:II: at EPAT:II:)
ENDDO
Group 15. Terminate Sweeps
LSWEEP=50
Group 18. Limits
VARMIN(CONC)=0.
Group 22. Monitor Print-Out
IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2
Group 24. Dumps For Restarts
IDISPA=1; IDISPB=1; IDISPC=10; CSG1='1'
TSTSWP=-1
DISTIL=T
EX(P1 )=6.653E-01
EX(U1 )=1.872E+00
EX(V1 )=2.486E-02
EX(W1 )=1.874E+00
EX(KE )=6.406E-02
EX(EP )=2.039E-04
EX(RHO1)=1.120E+00
EX(MARK)=6.183E-01
EX(HIG )=7.655E+00
EX(EL1 )=1.250E+02
EX(ENUT)=1.614E+01
EX(EPKE)=1.000E-10
EX(CONC)=1.080E-02
LSG57=T;ISG52=2
PARSOL=F;ntprin=1
LIBREF = 859
STOP
Second run
----------
Group 1. Run Title and Number
TEXT(ATMOSPHERIC B.L., second run )
Group 1. T-Direction Grid Spacing
STEADY=F;GRDPWR(T,10,5.E3,1)
Group 3. X-Direction Grid Spacing
GRDPWR(X,20,5000,1)
Group 4. Y-Direction Grid Spacing
GRDPWR(Y,20,1000,2.0)
Group 5. Z-Direction Grid Spacing
GRDPWR(Z,20,5000,1)
Group 7. Variables: STOREd,SOLVEd,NAMEd
SOLVE(P1,U1,V1,W1,CONC)
STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1)
SOLUTN(P1,Y,Y,Y,N,N,Y)
TURMOD(KEMODL)
Group 9. Properties
PRESS0= 1.000000E+05; TEMP0= 2.730000E+02
SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm
DVO1DT= 3.410000E-03
PRT(EP)= 1.314000E+00
Group 11.Initialise Var/Porosity Fields
FIINIT(CONC)=0.0
Group 13. Boundary & Special Sources
! outlets
PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP)
COVAL(HOUT,P1,1.,0.)
PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP)
COVAL(EOUT,P1,1.,0.)
PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(NOUT,P1,1.,0.)
! ground bourndary
PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP)
COVAL(GROUND,U1,GRND5,0.)
COVAL(GROUND,W1,GRND5,0.)
COVAL(GROUND,KE,GRND5,GRND5)
COVAL(GROUND,EP,GRND5,GRND5)
WALLA = 2.000000E-02 ;WALLB = 0.000000E+00
EGWF = T
WALLCO = GRND5
! inlets by power-law form: Uy=Uh*(y/h)**alfa
REAL(VELX,VELZ,REFH,ALPHA,RHOIN)
REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH)
VELX=1.0 ! x component of inlet velocity
VELZ=1.0 ! z component of inlet velocity
REFH=10. ! reference height for wind reference velocity
ALPHA=0.21 !
RHOIN=RHO1 ! inlet density
AK=0.41 ! constant
ZO=0.022 ! effective roughness length
HO=0.0 ! height of boundary-layer origin above domain origin
VEL2=VELX*VELX+VELZ*VELZ
QREF=SQRT(VEL2) ! inlet velocity
RH=REFH/ZO
QTAU=AK*QREF/(LOG(RH))
QTAU2=QTAU*QTAU
GKEIN=QTAU2/0.3 ! inlet k
GEPCON=QTAU2*QTAU/AK
PATCH(WINLET,WEST,1,1,1,NY,1,NZ,1,LSTEP)
CONST=RHOIN*ABS(VELX)/REFH**ALPHA
(SOURCE of P1 at WINLET is CONST*YG^ALPHA)
CONST=VELX/REFH**ALPHA
(SOURCE of U1 at WINLET is CONST*YG^ALPHA with ONLYMS)
CONST=VELZ/REFH**ALPHA
(SOURCE of W1 at WINLET is CONST*YG^ALPHA with ONLYMS)
(SOURCE of KE at WINLET is GKEIN with ONLYMS)
(SOURCE of EP at WINLET is GEPCON/(YG-HO) with ONLYMS)
! initial by power-law form: Uy=Uh*(y/h)**alfa
PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1)
CONST=VELX/REFH**ALPHA
(INITIAL of U1 at INIT is CONST*YG^ALPHA)
CONST=VELZ/REFH**ALPHA
(INITIAL of W1 at INIT is CONST*YG^ALPHA)
(INITIAL of KE at INIT is GKEIN)
(INITIAL of EP at INIT is GEPCON/(YG-HO))
REAL(XSIZE,ZSIZE,X0,Z0)
XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area
X0=0; Z0=ZWLAST ! coordinates of origin on explored area
! ground relief
(STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($
2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR)
! geometry marker
(STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR)
! air density
(PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000)))
DO II=1,LSTEP
! read exist transfer objects
PATCH(LPAT:II:,LOW,1,NX,1,NY,1,1,:II:,:II:)
(IMPORT from HTRO1:II: at LPAT:II:)
! create transfer objects
PATCH(EPAT:II:,EAST,NX,NX,1,NY,1,NZ,:II:,:II:)
(EXPORT in ETRO2:II: at EPAT:II:)
ENDDO
Group 15. Terminate Sweeps
LSWEEP=50
Group 18. Limits
VARMIN(CONC)=0.
Group 22. Monitor Print-Out
IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2
Group 24. Dumps For Restarts
IDISPA=1; IDISPB=1; IDISPC=10; CSG1='2'
TSTSWP=-1
DISTIL=T
EX(P1 )=6.024E-01
EX(U1 )=1.866E+00
EX(V1 )=1.863E-02
EX(W1 )=1.850E+00
EX(KE )=7.773E-02
EX(EP )=2.190E-04
EX(RHO1)=1.134E+00
EX(MARK)=7.909E-01
EX(HIG )=2.626E+00
EX(EL1 )=1.151E+02
EX(ENUT)=1.671E+01
EX(EPKE)=1.000E-10
EX(CONC)=4.890E-03
LSG57=T;ISG52=2
PARSOL=F;ntprin=1
STOP
Third run
---------
Group 1. Run Title and Number
TEXT(ATMOSPHERIC B.L., Third run )
Group 2. T-Direction Grid Spacing
STEADY=F;GRDPWR(T,10,5.E3,1)
Group 3. X-Direction Grid Spacing
GRDPWR(X,20,5000,1)
Group 4. Y-Direction Grid Spacing
GRDPWR(Y,20,1000,2.0)
Group 5. Z-Direction Grid Spacing
GRDPWR(Z,20,5000,1)
Group 7. Variables: STOREd,SOLVEd,NAMEd
SOLVE(P1,U1,V1,W1,CONC)
STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1)
SOLUTN(P1,Y,Y,Y,N,N,Y)
TURMOD(KEMODL)
Group 9. Properties
PRESS0= 1.000000E+05; TEMP0= 2.730000E+02
SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm
DVO1DT= 3.410000E-03
PRT(EP)= 1.314000E+00
Group 11.Initialise Var/Porosity Fields
FIINIT(CONC)=0.0
Group 13. Boundary & Special Sources
! outlets
PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP)
COVAL(HOUT,P1,1.,0.)
PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP)
COVAL(EOUT,P1,1.,0.)
PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(NOUT,P1,1.,0.)
! ground bourndary
PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP)
COVAL(GROUND,U1,GRND5,0.)
COVAL(GROUND,W1,GRND5,0.)
COVAL(GROUND,KE,GRND5,GRND5)
COVAL(GROUND,EP,GRND5,GRND5)
WALLA = 2.000000E-02 ;WALLB = 0.000000E+00
EGWF = T
WALLCO = GRND5
! inlets by power-law form: Uy=Uh*(y/h)**alfa
REAL(VELX,VELZ,REFH,ALPHA,RHOIN)
REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH)
VELX=1.0 ! x component of inlet velocity
VELZ=1.0 ! z component of inlet velocity
REFH=10. ! reference height for wind reference velocity
ALPHA=0.21 !
RHOIN=RHO1 ! inlet density
AK=0.41 ! constant
ZO=0.022 ! effective roughness length
HO=0.0 ! height of boundary-layer origin above domain origin
VEL2=VELX*VELX+VELZ*VELZ
QREF=SQRT(VEL2) ! inlet velocity
RH=REFH/ZO
QTAU=AK*QREF/(LOG(RH))
QTAU2=QTAU*QTAU
GKEIN=QTAU2/0.3 ! inlet k
GEPCON=QTAU2*QTAU/AK
PATCH(LINLET,LOW,1,NX,1,NY,1,1,1,LSTEP)
CONST=RHOIN*ABS(VELZ)/REFH**ALPHA
(SOURCE of P1 at LINLET is CONST*YG^ALPHA)
CONST=VELX/REFH**ALPHA
(SOURCE of U1 at LINLET is CONST*YG^ALPHA with ONLYMS)
CONST=VELZ/REFH**ALPHA
(SOURCE of W1 at LINLET is CONST*YG^ALPHA with ONLYMS)
(SOURCE of KE at LINLET is GKEIN with ONLYMS)
(SOURCE of EP at LINLET is GEPCON/(YG-HO) with ONLYMS)
! initial by power-law form: Uy=Uh*(y/h)**alfa
PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1)
CONST=VELX/REFH**ALPHA
(INITIAL of U1 at INIT is CONST*YG^ALPHA)
CONST=VELZ/REFH**ALPHA
(INITIAL of W1 at INIT is CONST*YG^ALPHA)
(INITIAL of KE at INIT is GKEIN)
(INITIAL of EP at INIT is GEPCON/(YG-HO))
REAL(XSIZE,ZSIZE,X0,Z0)
XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area
X0=XULAST; Z0=0 ! coordinates of origin on explored area
! ground relief
(STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($
2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR)
! geometry marker
(STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR)
! air density
(PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000)))
DO II=1,LSTEP
! read transfer object
PATCH(WPAT:II:,WEST,1,1,1,NY,1,NZ,:II:,:II:)
(IMPORT from ETRO1:II: at WPAT:II:)
! create transfer object
PATCH(HPAT:II:,HIGH,1,NX,1,NY,NZ,NZ,:II:,:II:)
(EXPORT in HTRO3:II: at HPAT:II:)
ENDDO
Group 15. Terminate Sweeps
LSWEEP=50
Group 18. Limits
VARMIN(CONC)=0.
Group 22. Monitor Print-Out
IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2
Group 24. Dumps For Restarts
IDISPA=1; IDISPB=1; IDISPC=10; CSG1='3'
TSTSWP=-1
DISTIL=T
EX(P1 )=6.093E-01
EX(U1 )=1.849E+00
EX(V1 )=1.861E-02
EX(W1 )=1.866E+00
EX(KE )=7.800E-02
EX(EP )=2.191E-04
EX(RHO1)=1.137E+00
EX(MARK)=8.582E-01
EX(HIG )=1.407E+00
EX(EL1 )=1.149E+02
EX(ENUT)=1.671E+01
EX(EPKE)=1.000E-10
EX(CONC)=8.269E-03
LSG57=T;ISG52=2
PARSOL=F;ntprin=1
STOP
fourth run
----------
Group 1. Run Title and Number
TEXT(ATMOSPHERIC B.L., fourth run )
Group 2. T-Direction Grid Spacing
STEADY=F;GRDPWR(T,10,5.E3,1)
Group 3. X-Direction Grid Spacing
GRDPWR(X,20,5000,1)
Group 4. Y-Direction Grid Spacing
GRDPWR(Y,20,1000,2.0)
Group 5. Z-Direction Grid Spacing
GRDPWR(Z,20,5000,1)
Group 7. Variables: STOREd,SOLVEd,NAMEd
SOLVE(P1,U1,V1,W1,CONC)
STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1)
SOLUTN(P1,Y,Y,Y,N,N,Y)
TURMOD(KEMODL)
Group 9. Properties
PRESS0= 1.000000E+05; TEMP0= 2.730000E+02
SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm
DVO1DT= 3.410000E-03
PRT(EP)= 1.314000E+00
Group 11.Initialise Var/Porosity Fields
FIINIT(CONC)=0.0
Group 13. Boundary & Special Sources
! outlets
PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP)
COVAL(HOUT,P1,1.,0.)
PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP)
COVAL(EOUT,P1,1.,0.)
PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(NOUT,P1,1.,0.)
! ground bourndary
PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP)
COVAL(GROUND,U1,GRND5,0.)
COVAL(GROUND,W1,GRND5,0.)
COVAL(GROUND,KE,GRND5,GRND5)
COVAL(GROUND,EP,GRND5,GRND5)
WALLA = 2.000000E-02 ;WALLB = 0.000000E+00
EGWF = T
WALLCO = GRND5
! initial by power-law form: Uy=Uh*(y/h)**alfa
REAL(VELX,VELZ,REFH,ALPHA,RHOIN)
REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH)
VELX=1.0 ! x component of inlet velocity
VELZ=1.0 ! z component of inlet velocity
REFH=10. ! reference height for wind reference velocity
ALPHA=0.21 !
RHOIN=RHO1 ! inlet density
AK=0.41 ! constant
ZO=0.022 ! effective roughness length
HO=0.0 ! height of boundary-layer origin above domain origin
VEL2=VELX*VELX+VELZ*VELZ
QREF=SQRT(VEL2) ! inlet velocity
RH=REFH/ZO
QTAU=AK*QREF/(LOG(RH))
QTAU2=QTAU*QTAU
GKEIN=QTAU2/0.3 ! inlet k
GEPCON=QTAU2*QTAU/AK
PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1)
CONST=VELX/REFH**ALPHA
(INITIAL of U1 at INIT is CONST*YG^ALPHA)
CONST=VELZ/REFH**ALPHA
(INITIAL of W1 at INIT is CONST*YG^ALPHA)
(INITIAL of KE at INIT is GKEIN)
(INITIAL of EP at INIT is GEPCON/(YG-HO))
REAL(XSIZE,ZSIZE,X0,Z0)
XSIZE=2*XULAST; ZSIZE=2*ZWLAST ! size of explored area
X0=XULAST; Z0=ZWLAST ! coordinates of origin on explored area
! ground relief
(STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($
2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR)
! geometry marker
(STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR)
! air density
(PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000)))
! read transfer objects
DO II=1,LSTEP
PATCH(LPAT:II:,LOW,1,NX,1,NY,1,1,:II:,:II:)
(IMPORT from HTRO3:II: at LPAT:II:)
PATCH(WPAT:II:,WEST,1,1,1,NY,1,NZ,:II:,:II:)
(IMPORT from ETRO2:II: at WPAT:II:)
ENDDO
Group 15. Terminate Sweeps
LSWEEP=50
Group 18. Limits
VARMIN(CONC)=0.
Group 22. Monitor Print-Out
IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2
Group 24. Dumps For Restarts
IDISPA=1; IDISPB=1; IDISPC=10; CSG1='4'
TSTSWP=-1
DISTIL=T
EX(P1 )=6.545E-01
EX(U1 )=1.841E+00
EX(V1 )=2.060E-02
EX(W1 )=1.842E+00
EX(KE )=1.175E-01
EX(EP )=2.695E-04
EX(RHO1)=1.137E+00
EX(MARK)=9.249E-01
EX(HIG )=4.938E-01
EX(EL1 )=1.004E+02
EX(ENUT)=1.909E+01
EX(EPKE)=1.000E-10
EX(CONC)=3.404E-02
LSG57=T;ISG52=2
PARSOL=F;ntprin=1
STOP
fifth run
----------
Group 1. Run Title and Number
TEXT(ATMOSPHERIC B.L., fifth run )
Group 2. T-Direction Grid Spacing
STEADY=F;GRDPWR(T,10,5.E3,1)
Group 3. X-Direction Grid Spacing
GRDPWR(X,40,10000,1)
Group 4. Y-Direction Grid Spacing
GRDPWR(Y,20,1000,2.0)
Group 5. Z-Direction Grid Spacing
GRDPWR(Z,40,10000,1)
Group 7. Variables: STOREd,SOLVEd,NAMEd
SOLVE(P1,U1,V1,W1,CONC)
STORE(EPKE,ENUT,EL1,HIG,MARK,RHO1)
SOLUTN(P1,Y,Y,Y,N,N,Y)
TURMOD(KEMODL)
Group 9. Properties
PRESS0= 1.000000E+05; TEMP0= 2.730000E+02
SETPRPS(1, 0) ! Domain material is: 0 Air at 20 deg C, 1 atm
DVO1DT= 3.410000E-03
PRT(EP)= 1.314000E+00
Group 11.Initialise Var/Porosity Fields
FIINIT(CONC) = 0.000000E+00
Group 13. Boundary & Special Sources
! outlets
PATCH(HOUT,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP)
COVAL(HOUT,P1,1.,0.)
PATCH(EOUT,EAST,NX,NX,1,NY,1,NZ,1,LSTEP)
COVAL(EOUT,P1,1.,0.)
PATCH(NOUT,NORTH,1,NX,NY,NY,1,NZ,1,LSTEP)
COVAL(NOUT,P1,1.,0.)
! pollution source
PATCH(SOURCE,CELL,1,7,1,1,1,4,1,1)
COVAL(SOURCE,CONC,FIXFLU,1.E5)
PATCH(SOURCE,CELL,1,7,1,1,1,4,1,LSTEP)
(SOURCE of CONC at SOURCE is COVAL(FIXFLU,10.*TIM))
! ground bourndary
PATCH(GROUND,SWALL,1,NX,1,1,1,NZ,1,LSTEP)
COVAL(GROUND,U1,GRND5,0.)
COVAL(GROUND,W1,GRND5,0.)
COVAL(GROUND,KE,GRND5,GRND5)
COVAL(GROUND,EP,GRND5,GRND5)
WALLA = 2.000000E-02 ;WALLB = 0.000000E+00
EGWF = T
WALLCO = GRND5
! inlets by power-law form: Uy=Uh*(y/h)**alfa
REAL(VELX,VELZ,REFH,ALPHA,RHOIN)
REAL(AK,ZO,HO,QREF,QTAU,QTAU2,GKEIN,GEPCON,CONST,VEL2,RH)
VELX=1.0 ! x component of inlet velocity
VELZ=1.0 ! z component of inlet velocity
REFH=10. ! reference height for wind reference velocity
ALPHA=0.21 !
RHOIN=RHO1 ! inlet density
AK=0.41 ! constant
ZO=0.022 ! effective roughness length
HO=0.0 ! height of boundary-layer origin above domain origin
VEL2=VELX*VELX+VELZ*VELZ
QREF=SQRT(VEL2) ! inlet velocity
RH=REFH/ZO
QTAU=AK*QREF/(LOG(RH))
QTAU2=QTAU*QTAU
GKEIN=QTAU2/0.3 ! inlet k
GEPCON=QTAU2*QTAU/AK
PATCH(LINLET,LOW,1,NX,1,NY,1,1,1,LSTEP)
CONST=RHOIN*ABS(VELZ)/REFH**ALPHA
CONST=ABS(VELZ)/REFH**ALPHA
(SOURCE of P1 at LINLET is CONST*YG^ALPHA)
(SOURCE of P1 at LINLET is RHO1*CONST*YG^ALPHA)
CONST=VELX/REFH**ALPHA
(SOURCE of U1 at LINLET is CONST*YG^ALPHA with ONLYMS)
CONST=VELZ/REFH**ALPHA
(SOURCE of W1 at LINLET is CONST*YG^ALPHA with ONLYMS)
(SOURCE of KE at LINLET is GKEIN with ONLYMS)
(SOURCE of EP at LINLET is GEPCON/(YG-HO) with ONLYMS)
PATCH(WINLET,WEST,1,1,1,NY,1,NZ,1,LSTEP)
CONST=RHOIN*ABS(VELX)/REFH**ALPHA
(SOURCE of P1 at WINLET is CONST*YG^ALPHA)
CONST=VELX/REFH**ALPHA
(SOURCE of U1 at WINLET is CONST*YG^ALPHA with ONLYMS)
CONST=VELZ/REFH**ALPHA
(SOURCE of W1 at WINLET is CONST*YG^ALPHA with ONLYMS)
(SOURCE of KE at WINLET is GKEIN with ONLYMS)
(SOURCE of EP at WINLET is GEPCON/(YG-HO) with ONLYMS)
! initial by power-law form: Uy=Uh*(y/h)**alfa
PATCH(INIT,INIVAL,1,NX,1,NY,1,NZ,1,1)
CONST=VELX/REFH**ALPHA
(INITIAL of U1 at INIT is CONST*YG^ALPHA)
CONST=VELZ/REFH**ALPHA
(INITIAL of W1 at INIT is CONST*YG^ALPHA)
(INITIAL of KE at INIT is GKEIN)
(INITIAL of EP at INIT is GEPCON/(YG-HO))
REAL(XSIZE,ZSIZE,X0,Z0)
XSIZE=XULAST; ZSIZE=ZWLAST ! size of explored area
X0=0; Z0=0 ! coordinates of origin on explored area
! ground relief
(STORED HIG AT GROUND IS 100.*(1-(X0+XG)/XSIZE)*(1-(Z0+ZG)/ZSIZE)*($
2.+SIN(6*(X0+XG)/XSIZE)+SIN(24*(Z0+ZG)/ZSIZE)) WITH TSTSTR)
! geometry marker
(STORED MARK IS 1 WITH IF(YG.GT.HIG[,1])!TSTSTR)
! air density
(PROPERTY RHO1 IS 1.189*EXP((YG+HIG[,1])/(-8000)))
Group 15. Terminate Sweeps
LSWEEP=50
Group 18. Limits
VARMIN(CONC)=0.
Group 22. Monitor Print-Out
IXMON=NX/2;IYMON=NY/2;IZMON=NZ-2
Group 24. Dumps For Restarts
IDISPA=1; IDISPB=1; IDISPC=LSTEP; CSG1='5'
TSTSWP=-1
DISTIL=T
EX(P1 )=4.700E+02
EX(U1 )=7.229E-01
EX(V1 )=1.281E-01
EX(W1 )=7.226E-01
EX(KE )=2.945E-02
EX(EP )=2.456E-04
EX(RHO1)=1.120E+00
EX(MARK)=7.981E-01
EX(HIG )=3.045E+00
EX(EL1 )=1.002E+02
EX(ENUT)=1.056E+01
EX(EPKE)=1.000E-10
EX(CONC)=1.338E-05
LSG57=T;ISG52=2
PARSOL=F;ntprin=1
STOP
STOP