GROUP 1. Run title and other preliminaries
DISPLAY
The case considered is the normal impingement of a turbulent
axisymmetric jet on a heated flat plate. The flow geometry
and conditions approximate to those reported experimentally
by D.Cooper et al ( Int.J.Heat Mass Transfer, Vol.36, No.10,
p2675,[1993] ). The jet issues into ambient fluid at a
Reynolds number of 2.3E4 from a pipe located 2 pipe diameters
above the electrically heated plate. The jet injection
temperature is ambient so that the purpose of the flow process
is to effect cooling. For the case of orthogonal impaction,
the flow is axisymmetric and is directed outward along the
surface giving rise to a radial wall jet. The simulation may
be performed with the standard k-e model or with the Reynolds
stress transport model. For the latter, the model employs
differential transport equations for determining the turbulent
fluxes of heat.
ENDDIS
The calculation performed is merely for demonstration purposes,
but the test case may form the basis of a validation exercise
which would require the following extensions: (a) a much finer
mesh, particularly in the round jet-mixing layer, the radial
wall and the thermal boundary layer; and (b) the implementation
of fully-developed flow conditions at the jet discharge. Never-
theless, the present computations show the correct trends in
that the k-e model leads to excessive turbulence energies along
the jet symmetry plane along the stagnation point. The RSTM
simulation requires at least 1000 sweeps for complete convergence.
The k-e simulation only requires around 300 for convergence.
BOOLEAN(KEMOD,FINEG);KEMOD=F;FINEG=F
IF(KEMOD) THEN
+ TEXT(KE_2D IMPINGING ROUND JET :T609
ELSE
+ TEXT(RSTM_2D IMPINGING ROUND JET :T609
ENDIF
TITLE
REAL(REY,DIAM,HEIGHT,WJET,RADJ,TKEIN,EPSIN,DTF,AIN,FLOW)
REAL(CP,TJET,TAMB,QPLATE,QIN);CP=1.E3;TJET=300.0
QPLATE=10.E3;TAMB=TJET;INTEGER(NYJ,NYFS)
REY=7.1E4;WJET=1.0;DIAM=1.0; RADJ=0.5*DIAM;HEIGHT=2.*DIAM
TKEIN=0.01*WJET*WJET;EPSIN=.1643*TKEIN**1.5/(0.09*DIAM)
GROUP 3. X-direction grid specification
CARTES=F;NX=1;XULAST=0.1;AIN=0.5*RADJ*RADJ*XULAST
GROUP 4. Y-direction grid specification
IF(FINEG) THEN
+ NYJ=10;NYFS=30;NZ=40
ELSE
+ NYJ=10;NYFS=15;NZ=30
ENDIF
NREGY=2; REGEXT(Y,5.*DIAM);IREGY=1;GRDPWR(Y,NYJ,RADJ,1.0)
IREGY=2;GRDPWR(Y,NYFS,5.*DIAM-RADJ,1.5)
GROUP 5. Z-direction grid specification
GRDPWR(Z,NZ,HEIGHT,0.8)
DTF=5.*HEIGHT/WJET/NZ
GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1,H1);SOLUTN(P1,Y,Y,Y,N,N,N)
SOLUTN(H1,Y,Y,Y,P,P,P)
PATCH(PLATE,HWALL,1,NX,1,NY,NZ,NZ,1,1)
COVAL(PLATE,H1,FIXFLU,QPLATE)
IF(KEMOD) THEN
+ TURMOD(KEMODL);COVAL(PLATE,V1,LOGLAW,0.0);KELIN=1
+ COVAL(PLATE,KE,LOGLAW,LOGLAW);COVAL(PLATE,EP,LOGLAW,LOGLAW)
ELSE
+ COVAL(PLATE,V1,1.0,0.0);IRSMSM=2
+ DTF=HEIGHT/WJET/NZ;TURMOD(REYSTRS,DTF,PLATE)
ENDIF
STORE(LEN1,ENUT,TMP1)
GROUP 9. Properties of the medium (or media)
RHO1=1.0;ENUL=WJET*DIAM/REY;FLOW=RHO1*WJET*AIN
QIN=FLOW*TJET*CP
PRT(H1)=0.9;PRNDTL(H1)=0.71;TMP1=LINH;TMP1A=0.0;CP1=CP
GROUP 11. Initialization of variable or porosity fields
FIINIT(W1)=1.E-10;FIINIT(V1)=0.0;FIINIT(H1)=CP*TAMB
FIINIT(KE)=TKEIN;FIINIT(EP)=0.09*TKEIN**2/(10.*ENUL)
PATCH(INWJET,INIVAL,1,1,1,NYJ,1,NZ,1,1)
COVAL(INWJET,W1,ZERO,WJET)
IF(.NOT.KEMOD) THEN
+ FIINIT(W2RS)=2.*FIINIT(KE)/3.;FIINIT(V2RS)=FIINIT(W2RS)
+ FIINIT(U2RS)=FIINIT(W2RS);FIINIT(VWRS)=0.3*FIINIT(KE)
ENDIF
GROUP 12. Convection and diffusion adjustments
GROUP 13. Boundary conditions and special sources
INLET(JET1,LOW,1,1,1,NYJ,1,1,1,1)
VALUE(JET1,P1,RHO1*WJET);VALUE(JET1,W1,WJET)
IF(KEMOD) THEN
+ VALUE(JET1,KE,TKEIN)
ELSE
+ VALUE(JET1,W2RS,FIINIT(W2RS));VALUE(JET1,V2RS,FIINIT(V2RS))
+ VALUE(JET1,U2RS,FIINIT(U2RS))
ENDIF
VALUE(JET1,EP,EPSIN);VALUE(JET1,H1,CP*TJET)
PATCH(TOP,LOW,1,1,NYJ+1,NY,1,1,1,1)
COVAL(TOP,P1,1.E3,0.0);COVAL(TOP,W1,ONLYMS,0.0)
COVAL(TOP,U1,ONLYMS,0.0);COVAL(TOP,V1,ONLYMS,0.0)
COVAL(TOP,KE,ONLYMS,1.E-10);COVAL(TOP,EP,ONLYMS,1.E-10)
COVAL(TOP,H1,ONLYMS,CP*TAMB)
PATCH(SIDE,NORTH,1,1,NY,NY,1,NZ,1,1)
COVAL(SIDE,P1,1.E3,0.0);COVAL(SIDE,W1,ONLYMS,0.0)
COVAL(SIDE,U1,ONLYMS,0.0);COVAL(SIDE,V1,ONLYMS,0.0)
COVAL(SIDE,KE,ONLYMS,1.E-10);COVAL(SIDE,EP,ONLYMS,1.E-10)
COVAL(SIDE,H1,ONLYMS,CP*TAMB)
GROUP 15. Termination of sweeps
IF(KEMOD) THEN
+ LSWEEP=300
ELSE
+ LSWEEP=1000
ENDIF
GROUP 16. Termination of iterations
RESREF(P1)=1.E-12*FLOW/RHO1
RESREF(V1)=RESREF(P1)*RHO1*WJET; RESREF(W1)=RESREF(V1)
RESREF(KE)=RESREF(P1)*RHO1*TKEIN; RESREF(EP)=RESREF(P1)*RHO1*EPSIN
RESREF(H1)=1.E-12*(0.5*YVLAST**2*XULAST+QIN)
GROUP 17. Under-relaxation devices
IF(KEMOD) THEN
+ RELAX(W1,FALSDT,DTF); RELAX(V1,FALSDT,DTF)
+ RELAX(KE,FALSDT,DTF); RELAX(EP,FALSDT,DTF)
+ RELAX(H1,FALSDT,DTF*NZ)
ELSE
+ RELAX(W1,FALSDT,DTF*4); RELAX(V1,FALSDT,DTF*4)
+ RELAX(H1,FALSDT,DTF*10); RELAX(VTRS,FALSDT,DTF/4)
+ RELAX(WTRS,FALSDT,DTF/4);LITER(H1)=30
ENDIF
GROUP 22. Spot-value print-out
IYMON=NY/2;IZMON=NZ-2
GROUP 23. Field print-out and plot control
NPLT=5;IYPRL=NY;NZPRIN=1;TSTSWP=-1;WALPRN=T
LIBREF = 609
STOP