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ABSTRACT 

 

This paper describes the convection-discretisation schemes provided by the authors 

for general use in PHOENICS V2.2 and later releases. This work, which was carried 

out in 1995, furnished PHOENICS with an extensive set of higher order schemes. In 

addition to the built-in upwind and hybrid differencing schemes, provision was made 

for five linear schemes and twelve non-linear schemes. These schemes are applicable 

to the convection of scalar and momentum variables on uniform and non-uniform, 

regular and BFC grids, with or without the presence of blocked or solid regions. 

     

1. INTRODUCTION 

 

An important consideration in CFD is the discretisation of the convection terms in the 

finite-volume equations. The accuracy, numerical stability and the boundedness of the 

solution depends on the numerical scheme used for these terms. The central issue is 

the specification of an appropriate relationship between the convected variable, stored 

at the cell centre, and its value at each of the cell faces. 

     

The default scheme used in PHOENICS for all variables is the hybrid-differencing 

scheme (HDS), which employs the 1st-order upwind-differencing scheme (UDS) in 

high convection regions; and the 2nd-order central-differencing scheme (CDS) in low-

convection regions. The UDS is bounded and highly stable, but highly diffusive when 

the flow direction is skewed relative to the grid lines. The HDS is only marginally 

more accurate than the UDS, as the 2nd-order CDS will be restricted to regions of low 

Peclet number.  

     

The two approaches commonly used to remedy the problem of numerical diffusion are 

mesh refinement and the adoption of schemes with a higher order of accuracy than 

UDS. For engineering problems, the necessary degree of grid refinement to alleviate 

numerical diffusion is generally impractical as the UDS and HDS are rather sluggish 

to grid-refinement. Consequently, schemes with higher-order truncation errors than 

UDS have been proposed in an attempt to improve resolution. 

    

Linear higher-order schemes, such as the CDS and the well-known QUICK scheme, 

increase the accuracy of the solution, but may suffer from the boundedness problem, 

i.e. the solution may display unphysical oscillations around steep gradients, or 

unacceptable negative values for species concentrations and certain turbulence 

quantities.  
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A number of approaches have been proposed to eliminate the boundedness problem. 

They can usually be classified as flux-blending methods (see Khosla & Rubin [1974]) 

or flux-limiter methods. The latter modify linear higher-order schemes by using a flux 

limiter, which enforces a boundedness criterion based on the local solution behaviour. 

The resulting scheme is therefore non-linear, and such schemes are usually formulated 

using either the flux-limiter diagram (see Sweby [1984]) or the normalised-variable 

diagram (see Leonard [1987] and Gaskell & Lau [1988]). The non-linear schemes in 

PHOENICS are based on the flux-limiter formulation of Roe [1987,1989]. This 

formulation differs from Sweby's [1984] in that the spatial terms are divorced from the 

time discretisation, as discussed by Waterson [1994].  

 

In the past PHOENICS has been equipped with two different and restrictive options 

for higher-order convection schemes. In PHOENICS 2.2, these implementations were 

replaced by a unified approach which allows the implementation of a large variety of 

linear and non-linear schemes applicable to the convection of both scalar and 

momentum variables on uniform and non-uniform, regular and BFC grids, with or 

without the presence of blocked or solid regions. 

     

These schemes may be used for both single- and two-phase flows, although the facility 

has yet to be extended to include the volume fraction equations R1, R2 and RS, and 

the energy variables TEM1 and TEM2. The other limitation is that there is no special 

treatment of the domain and internal boundaries, at which all higher-order schemes 

are reduced to the UDS.  

 

Specifically, PHOENICS 2.2 and later releases provide for 5 alternative linear 

schemes, and 12 alternative non-linear schemes. The linear schemes are based on the 

Kappa formulation (see Van Leer [1985], Roe [1987]), and comprise CDS, QUICK, 

the cubic upwind scheme (CUS), the linear upwind scheme (LUS) and Fromm's 

[1968] scheme. The non-linear schemes extend the Kappa formulation so as to employ 

a flux limiter to secure boundedness (see Deconinck and Waterson [1995]) at the 

expense of reduced accuracy. The non-linear schemes currently available are: 

SMART, H-QUICK, UMIST, Koren, Superbee, Minmod, OSPRE, van Albada, 

MUSCL, CHARM, H-CUS  and van-Leer harmonic.  

 

This paper puts on record the work conducted to equip PHOENICS with an extensive 

set of higher-order schemes. In the remainder of this paper, Sections 2 to 6 provide a 

comprehensive mathematical description, Sections 7 and 8 deal with the 

implementation and activation of the numerical schemes, Sections 9 and 10 provide 

recommendations and exemplification, and finally, Section 11 provides concluding 

remarks.  

 

2. FINITE-VOLUME EQUATIONS 

             

For simplicity, the analysis is presented in terms of steady, single-phase flow. The 

conservation equation for a general specific variable  can be written as: 

 

    .( )  U G S  (2.1) 
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where  is the fluid density, U the fluid velocity vector, G is a diffusion exchange 

coefficient, and S the source term. This equation can be integrated over a control 

volume so as to produce the following discretised equation for : 

     

      Jh - Jl + Jn - Js + Je - Jw + Dh - Dl + Dn - Ds + De - Dw = Sp                         (2.2) 

  

where Sp is the source term for the control volume p, and Jf and Df represent, 

respectively, the convective and diffusive fluxes of  across the control-volume face f 

(f=h,l,n,s,e or w). 

        

The convection fluxes through the cell faces are calculated as: 

     

       Jf = Cff                                              (2.3) 

        

where Cf is the mass flow rate across the cell face f. The convected variable f 

associated with this mass flow rate is actually stored at the cell centres, and thus some 

form of  interpolation assumption must be made in order to determine its value at each 

cell face. The interpolation procedure employed for this operation is the subject of the 

various schemes proposed in the literature, and the accuracy, stability and 

boundedness of the solution depends on the procedure used. 

 

In general, the value of f can be explicity formulated in terms of its neighbouring 

nodal values by a functional relationship of  the form: 

     

       f = P(nb)                                          (2.4) 

        

where nb denotes the neighbouring-node  values.  

     

Combining equations (2.2) through (2.4), the discretised equation becomes: 

     

      { Dh + Ch [P(nb)]h } - { Dl + Cl [ P(nb)]l  } + 

       

      { Dn + Cn [P(nb)]n } - { Ds + Cs [P(nb)]s  } + 

       

      { De + Ce [P(nb) ]e } - { Dw + Cw [P(nb)]w }  =  Sp       (2.5) 

 

In PHOENICS, the higher-order schemes are introduced into equation (2.5) by using 

the deferred-correction procedure of Rubin and Khosla [1982]. This procedure 

expresses the cell-face value f by: 

     

       f = f(U) + f
'                                        (2.6) 

        

where f
' is a higher-order correction which represents the difference between the 

UDS face value f(U) and the higher-order scheme value f(H), i.e. 

     

       f
'
 = f(H) - f(U)                                    (2.7) 

        

If equation (2.6) is substituted into equation (2.5), the resulting discretised equation is:     
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      { Dh + Ch h(U) } - { Dl + Cl l(U) } +  { Dn + Cn n(U) } - { Ds + Cs s(U) } 

          

   + { De + Ce e(U) } - { Dw + Cw w(U) } = Sp + Bp (2.8) 

 

where Bp is the deferred-correction source term, given by: 

    

     Bp = Cll
'
 - Chh

'
  + Css

' - Cnn
' + Cww

' - Cee
'  (2.9)  

        

This treatment leads to a diagonally dominant coefficient matrix since it is formed 

using the UDS. 

    

If equation (2.8) is expanded in terms of nodal values, the final form of the discretised 

equation is: 

    

     app = (anbnb) + Sp + Bp                           (2.10)  

     

where: ap and anb are the convection-diffusion coefficients obtained from the UDS: p 

is the cell-average value of  stored at the cell centre; and the summation is over the 

immediate neighbouring nodes nb (=L,H,S,N,W and E). 

 

All of the schemes provided in PHOENICS calculate the cell-face values f using at 

most three cell-centre values, namely: the upstream, central and downstream grid 

points, designated by u, c and d respectively. The cell-face location f lies between the 

central and downstream grid points. 

 

3. CENTRAL-, UPWIND- AND HYBRID-DIFFERENCING SCHEMES 

 

Central Differencing Scheme: The most natural assumption for the cell-face value of 

the convected variable f  would appear to be the CDS, which calculates the cell-face 

value from: 

     

        f = 0.5 (c + d)                                    (3.1) 

         

This scheme is 2nd-order accurate, but is unbounded so that unphysical oscillations 

appear in regions of strong convection and also in the presence of discontinuities, such 

as shocks. The CDS may be used directly in very low Reynolds-number flows where 

diffusive effects dominate over convection. 

 

Upwind Differencing Scheme: The UDS (see Courant et al [1952]) assumes that the 

convected variable at the cell face f is the same as the upwind cell-centre value: 

     

        f = c                                                (3.2) 

                                                            

The UDS is unconditionally bounded and highly stable, but as noted earlier it is only 

1st-order accurate in terms of truncation error and may produce severe numerical 

diffusion. The scheme is therefore highly diffusive when the flow direction is skewed 

relative to the grid lines. 



PHOENICS Journal, Vol.12, No.2, pp173-201, (1999). 
 

 5 

 

Hybrid Differencing Scheme: The HDS of Spalding [1972] switches the discretisation 

of the convection terms between CDS and UDS according to the local cell Peclet 

number, as follows: 

     

        f = 0.5 (c + d)      for     Pe < 2                                                                                   

               (3.3) 

        f = c                      for     Pe > 2                     

                                                            

The cell Peclet number is defined as: 

    

        Pe =  abs(Uf) Af/Df                                 (3.4) 

         

in which Af and Df are, respectively, the cell-face area and physical diffusion 

coefficient. When Pe > 2, CDS calculations tend to become unstable so that the HDS 

reverts to the UDS. Physical diffusion is ignored when Pe > 2.  

    

The HDS scheme is marginally more accurate than the UDS, because the 2nd-order 

CDS will be used in regions of low Peclet number. 

 

4. CLASSIFICATION OF HIGHER-ORDER SCHEMES 

        

Higher schemes can be classified as linear or non-linear, where linear means their 

coefficients are not direct functions of the convected variable when applied to a linear 

convection equation. It is important to recognise that linear convection schemes of 

2nd-order accuracy or higher may suffer from unboundedness, and are not 

unconditionally stable. 

 

Non-linear schemes analyse the solution within the stencil and adapt the discretisation 

to avoid any unwanted behaviour, such as unboundedness (see Waterson [1994]). 

These two types of scheme may be presented in a unified way by use of the Flux-

Limiter formulation (Waterson and Deconinck [1995]), which calculates the cell-face 

value of the convected variable from:  

     

       f = c + 0.5B(r) (c - u)                              (4.1) 

        

where B(r) is termed a limiter function, and the gradient ratio r is defined as: 

     

       r = (d - c)/( c -u)                                     (4.2) 

 

The generalisation of this approach to handle non-uniform meshes has been given by 

Waterson [1994]. 

 

From equation (4.1) it can be seen that  B=0 gives the UDS and B=r gives the CDS. 

 

5. LINEAR HIGHER-ORDER SCHEMES 

 

PHOENICS provides the following linear higher-order schemes: 
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• CDS; 

• Linear Upwind Scheme (LUS); 

• Quadratic Upwind Scheme (QUICK); 

• Fromm’s Upwind Scheme; and 

• Cubic Upwind Scheme. 

 

All of the foregoing schemes are unified for implementation purposes as members of 

the Kappa class of schemes: 

     

       B(r) = 0.5 { (1 + K)r+(1 - K) }                              (5.1) 

        

with K =  1  for CDS, K = 1/2  for QUICK; K = -1 for LUS,  K = 0  for Fromm; and K 

= 1/3 for CUS. Consequently, B(r)=0 gives UDS, B(r)=1 gives LUS, and B(r)=r gives 

the CDS. 

 

The linear schemes appear as straight lines in the Flux-Limiter Diagram (FLD) which 

takes the form of a plot of B(r) against r (see for example Hirsch [1990]). The two 

main regions of this diagram are given by r<0, indicating an extremum, and r>0 

indicating monotonic variation. The linear schemes provided in PHOENICS are 

plotted in the Flux-Limiter Diagram of Figure 5.1. 

 

Kappa Schemes: The Kappa formulation calculates the cell-face value f as the sum of 

the upwind value and a higher-order correction: 

     

       f = c + {0.25 (1+K) (d - c) + 0.25 (1-K) (c - u)}                                 (5.2) 

 

where K is a real number in the range: -1 <= K <= 1. 

 

The Kappa class of schemes has as its extremes CDS (K=1), with no upwind bias, and 

LUS (K=-1), with complete upwind bias. Other members of the class may be viewed 

as weighted averages of these two schemes. All of these schemes require a 5-point 

stencil in one dimension (with the exception of  K=1, which requires only 3), and all 

schemes are 2nd-order accurate, with the exception of K=1/3 (Agarwal[1981]), which 

is 3rd-order. 

 

Linear Upwind Scheme: The LUS (see Price et al [1966]) calculates the face value of 

the convected variable by linear extrapolation from the two upwind cell-centre values: 

     

        f = c + 0.5(c-u)                                  (5.3) 

         

and is therefore completely upwind biased, with no account taken of downstream 

influences. The scheme is often referred to as the 2nd-order upwind scheme.  

 

Quadratic Upwind Scheme: The QUICK (Quadratic Upwind Interpolation for 

Convection Kinematics) scheme of Leonard [1978,1979] uses a quadratic fit through 

two upwind nodes and one downwind cell centre: 

     

        f = c + (3d - 2c - u)/8                             (5.4) 
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This scheme is 2nd-order accurate if the definition of truncation error is based on 

approximating the spatial derivative at cell centres in the linear convection equation 

(see Waterson [1994]). Other authors (see Leonard [1979], Gaskell & Lau[1988]) 

have chosen alternative definitions of the truncation error, according to which QUICK 

becomes 3rd-order accurate. 

        

 

 

 
 

Figure 5.1: Linear Schemes plotted in the Flux Limiter Diagram 
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6. NON-LINEAR SCHEMES  

 

Table 6.1 lists the non-linear schemes which have been provided in PHOENICS, 

while Figures 6.1 to 6.3 present the various schemes in the Flux-Limiter Diagram. 

    

 

Scheme B(r) Notes 

SMART  max(0,min(2r, 0.75r+0.25, 4)) Gaskell & Lau [1988]): bounded 

QUICK, piecewise linear 

H-QUICK 2 (r+|r|)/(r+3) Waterson & Deconinck [1995]; 

harmonic based on QUICK, 

smooth 

UMIST max( 0, min(2r, 0.25+0.75r, 0.75+0.25r, 2) ) Lien & Leschziner [1994]; 
bounded QUICK, piecewise 

linear 

CHARM r(3r+1)/(r+1)2    for r  >  0; 

B(r) = 0.            for r <=  0 

Zhou [1995]; bounded QUICK, 

smooth 

MUSCL  max( 0, min( 2r, 0.5+0.5r, 2) ) van Leer [1979]; bounded 

Fromm 

Van-Leer harmonic (r+|r|)/(r+1) bounded Fromm 

OSPRE 3 (r2+r)/{2.(r2+r+1)} Waterson & Deconinck [1995]; 

bounded Fromm 

van Albada [1982] (r2+r)/(r2+1) van Albada [1982]; bounded 

Fromm 

Superbee max( 0, min(2r,1), min(r,2) ) Roe [1986], Hirsch [1990] 

Minmod max( 0, min(r, 1) ) Roe [1986], Hirsch [1990] 

H-CUS  1.5 (r+|r|)/(r+2) Waterson & Deconinck [1995]; 

bounded CUS 

Koren  max( 0, min( 2r, 2r/3+1/3, 2) ) Koren [1993]; bounded CUS 

 

Table 6.1: PHOENICS Non-Linear Schemes 

 

The van-Leer harmonic, Minmod and MUSCL schemes are in fact identical to the 

later Normalised-Variable-Diagram schemes, respectively: HLPA (Zhu [1992]), 

SOUCUP (Zhu and Rodi [1991]) and MLU (Noll [1992]). 
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Figure 6.1: Non-Linear Schemes based on QUICK in the Flux-Limiter Diagram 

     

 

 
  

Figure 6.2: Non-Linear Schemes based on Fromm in the Flux-Limiter Diagram 
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Figure 6.3: Miscellaneous Non-Linear Schemes plotted in the Flux Limiter 

Diagram 

 

Waterson & Deconinck [1995] argue that most limiters fall into the following two 

categories: 

     

• Polynomial ratio (PR) limiters, which offer the possibility of smooth, continuous 

limiter functions without discontinuous switching, thereby aiding convergence; and 

 

• Piecewise-linear (PL) limiters which switch between linear schemes so as to 

produce bounded versions of existing linear schemes. The disadvantage is that their 

discontinuous nature may induce convergence problems. 

 

The van Leer harmonic and OSPRE limiters are symmetric PR limiters, by which is 

meant that the forward and backward  gradients are treated in the same manner, i.e. 

B(r) = r B(1/r). 

     

The H-QUICK and H-CUS limiters are non-symmetric harmonic limiters which are 

designed to be tangential at r=1 to QUICK and CUS respectively. 

     

The UMIST and MUSCL limiters are symmetric PL limiters, whereas the SMART 

and Koren limiters are non-symmetric PL limiters. 

     

The Minmod scheme is a composite of the UDS, CDS and LUS, and these three 

schemes are also involved in the Superbee scheme. 
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The CHARM scheme may be classed as a non-symmetric PR limiter which is 

tangential to QUICK at r=1, and reverts to the UDS for r < 0. This has been used with 

some success by Zhou [1995]  for shock-capturing problems. 

 

Limiter functions are designed to fulfil particular boundedness criteria, usually either 

the Total-Variation Diminishing (TVD) (Harten[1984], Sweby[1984]) or Positivity 

(Spekreijse [1986])  conditions.  

     

These conditions prescribe regions on the FLD bounded by straight lines (see Hirsch 

[1990]). Deconinck and Waterson [1995] suggest  that the TVD criterion is 

unnecessarily restrictive, as Sweby's TVD region in the FLD is entirely contained by 

the Positivity region. 

     

All flux-limited schemes provided in PHOENICS are positive, and the following 

schemes are TVD: Koren, MUSCL, van Leer harmonic, Minmod, Superbee and 

UMIST. 

     

The Superbee scheme forms the upper limit of the TVD diagram, and is known to 

have excellent resolution properties for discontinuities. 

 

7. IMPLEMENTATION OF THE SCHEMES 

 

The implementation strategy adopted in PHOENICS is to set DIFCUT=0 so as to 

retain the UDS for use in the built-in convection terms, and then to introduce the 

required higher-order modifications to this scheme in the form of an additional 

deferred-correction source term.  

     

For details concerning the treatment of non-uniform meshes and BFCs, the reader is 

referred to Waterson [1994]. 

     

The higher-order convection schemes are coded in the GX-file GXHOCS.FOR, which 

comprises subroutine GXHOCS and its ancillary routines GXHOEN, GXHOHL, 

GXFLPS and BLKSLD. 

         

Subroutine GXHOCS is called from Group 1 Section 1 and Group 13 Sections 13 and 

14 of Subroutine GREX3. 

         

In Group 1 Section 1, GXHOCS forms the array INLCS(NPHI) and allocates storage 

for several geometrical quantities. The array INLCS contains an integer, which defines 

for each variable the scheme selected by the user from the Menu or in Q1 via the 

SCHEME PIL command. 

 

In Group 13, the deferred-correction source terms are calculated in Section 13 for 

linear schemes, and in Section 14 for non-linear schemes. Subroutine GXHOEN 

computes the east/west and north/south cell-face contributions to the source term, and 

Subroutine GXHOHL computes the low and high cell-face contributions. 

     

Subroutine GXFLPS is called directly from Subroutines GXHOEN and GXHOHL so 

as to calculate the flux-limiter function for the non-linear schemes.   
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Function BLKSLD is used by subroutines GXHOEN and GXHOHL so as to detect 

the presence of blocked faces and solid cells within the stencil used to calculate the 

higher-order correction for a single-cell face. If BLKSLD is .TRUE., then no higher-

order correction is calculated and the scheme reduces to the UDS. 

 

8. SCHEME ACTIVATION  

      

The PIL command SCHEME is used to select the required higher-order scheme for a 

SOLVEd-for variable. The user may also select higher-order schemes from the 

PHOENICS MENU. The default scheme for all variables is the HDS, which is 

activated by the setting DIFCUT=0.5. The UDS is activated for all variables by setting 

DIFCUT=0. The MENU provides a default setting of higher-order schemes, namely: 

VANLH for all variables. 

  

A particular higher-order scheme is assigned to one or more dependent variables by 

the SCHEME command, whose syntax is:  

       

      SCHEME(NAME,variable name 1,variable name 2,...etc.) 

       

The 1st argument NAME identifies the required discretisation scheme, as follows: 

  

Linear schemes 

 

        NAME = LUS, FROMM, CUS, QUICK or CDS 

       

Non-linear schemes 

 

        NAME = SMART, HQUICK, UMIST, KOREN, SUPBEE, MINMOD, OSPRE, 

                      VANALB, VANL1 (or MUSCL), VANL2 (or VANLH), CHARM, 

                      or HCUS. 

 

The 2nd argument permits the user to specify those SOLVEd variables , which will 

use the selected scheme. If ALL is entered as the 2nd argument, then the selected 

scheme is applied to all SOLVEd-for variables. For example, 

  

      SCHEME(QUICK,U1,V1);SCHEME(SMART,H1,C1,C2) 

  

selects QUICK for U1 and V1, and SMART for H1,C1 and C2, and UDS for any 

SOLVEd variables, which do not appear in a SCHEME command. 

 

The SCHEME command is equivalent to: 

  

      DIFCUT=0.;PATCH(HOCS,CELL,1,NX,1,NY,1,NZ,1,LSTEP) 

 

with COVAL(HOCS,PHI,FIXFLU,GRND1) for linear schemes; and 

COVAL(HOCS,PHI,FIXFLU,GRND2) for non-linear schemes. 
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The SCHEME command also assigns an appropriate scheme number, ISCHEM, to 

each variable as follows: 

 

Scheme Type ISCHEM 

LUS Linear 1 

FROMM “ 2 

CUS “ 3 

QUICK  “ 4 

CDS “ 5 

SMART Non-Linear 6 

KOREN “ 7 

VANL1/MUSCL “ 8 

HQUICK “ 9 

OSPRE “ 10 

VANL2/VANLH “ 11 

VAN ALBADA “ 12 

MINMOD “ 13 

SUPBEE “ 14 

UMIST “ 15 

HCUS “ 16 

CHARM “ 17 

                                                   

The array INLCS(NPHI) is used to store the scheme number, and this information is 

then transmitted from SATELLITE to the GREX file GXHOCS by way of the 

SPEDAT facility. i.e.     

 

      SPEDAT(SET,SCHEME,INLCS//IVAR,I,ISCHEM)  

       

where IVAR is a character variable of length 2, which is equal to the number of the 

SOLVEd-for variable. Thus, for example, INLCS03 corresponds to the variable U1 

and INLCS07 to the variable W1. 

     

If BFC=T then SCHEME arranges unconditional storage of: the Cartesian velocity 

components UCRT, VCRT and WCRT; and the grid-aligned velocity components 

UCMP, VCMP and WCMP. These components are required in the FORTRAN coding 

supplied in subroutine GXHOCS. 

 

9. RECOMMENDATIONS 

 

The selection of a suitable higher-order scheme involves a compromise between 

accuracy and numerical stability. The scheme should be accurate enough to provide 

significantly better resolution than the UDS, but without producing spurious  

oscillations in the solution and/or severe convergence problems. 

     

The linear higher-order schemes offer good resolution, but are unbounded and likely 

to produce unphysical oscillations in regions of steep gradients, which can lead to 
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severe convergence problems. Therefore, it is recommended that non-linear (bounded) 

schemes always be applied to: 

      

• the momentum equations whenever physical discontinuities are present, as for 

example in shock waves;  

 

• those turbulence transport equations for which negative values are unacceptable, 

e.g. k,  and the Reynolds  normal stresses; and 

 

• the species concentrations and enthalpy equations for which bounded solutions are 

essential.  

     

For incompressible flows it is recommended that a linear higher-order scheme is 

applied to the momentum equations, unless severe  convergence difficulties are 

encountered, in which case the user should employ a non-linear (bounded) scheme. 

     

Of the linear higher-order schemes, the CUS is formally the most accurate according 

to truncation error, although QUICK gives similar results. The LUS is somewhat less 

accurate than these schemes, but gives much better numerical stability. 

     

Of the non-linear schemes, the piecewise-linear, kappa-based schemes, SMART, 

Koren and MUSCL are likely to give the highest levels of accuracy. However, the 

smooth limiters, such as OSPRE and van Leer Harmonic, are likely to give much 

better convergence behaviour at somewhat reduced accuracy. 

    

Minmod and Superbee not recommended for general use: Minmod because it is 

diffusive and slow to converge, and Superbee because it is over-compressive and will 

therefore sharpen physically-smooth gradients. Superbee is however excellent for  

sharp-interface problems e.g. free-surface scalar markers. 

     

It should always be possible to obtain convergence when using the higher-order 

schemes from the very start of the calculation. Typically, the false time-step 

requirements are between 0.01 and  0.1 of the value required by the UDS or HDS. If 

convergence proves particularly problematic, then it is suggested that the user try 

restarting the calculation from a UDS or HDS solution. 

       

10. EXEMPLIFICATION 

 

The 'Numerical-Algorithms' library contains the Q1 files shown in Table 10.1 which 

exemplify the use of the higher-order schemes. 

 

Any of these cases may be loaded from the LIBRARY MENU, or alternatively from 

the SATELLITE in interactive mode by typing, for example, LOAD(N110). 

 

The results of library cases N101 to N104 inclusive may be found in the PHOENICS 

Applications Album by clicking on ‘Applications’ and then on ‘Numerical Methods’.                 
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Library Case Title Number 

2d Diagonal Scalar Convection N101 

2d Laminar Wall-Driven Cavity N102 

2d Laminar Backward Facing Step N103 

2d Scalar Convection with Recirculation N104 

2d Turbulent Backward Facing Step N105 

2d Laminar Wall-Driven Cavity     ( consistency tests ) N106 

2d Turbulent Backward Facing Step ( consistency tests ) N107 

2d Laminar Flow Over a Thin Fence ( consistency tests ) N108 

2d Laminar Wall-Driven Cavity ( BFC consistency tests ) N109 

2d Turbulent Flow through an  Orifice Plate N110 

1d Shock-free transonic flow in a Laval nozzle N111 

1d Shocked transonic flow in a Laval nozzle N112 

2d Transonic underexpanded free jet N113 

2d Bluff-body stabilised methane jet N114 

2d Diagonal Scalar Convection (BFC test) N115 

2d Uniform Flow through a Box (BFC test) N116 

2d Uniform Flow across a Skewed Box (BFC test) N117 

 

Table 10.1: PHOENICS Library of Q1 Input files 

 

N101: 2D Diagonal Scalar Convection: The problem concerns the 2d pure 

convection of a step profile of a scalar by a unidirectional and uniform flow field, 

which forms an angle 45 degrees with the horizontal axis. Since physical diffusion is 

absent, no mixing layer should form and the scalar discontinuity should persist in the 

streamwise direction. The Q1 example compares the solution for 6 different linear 

schemes and 9 non-linear schemes. The predicted concentration contours are 

compared in Figure 10.1 for the UDS and the Superbee scheme. It is evident that the 

UDS suffers from significant numerical diffusion. 
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Figure 10.1: Diagonal Scalar Convection: Concentration 

Contours for the UDS and Superbee Scheme. 

 

Figure 10.2 compares predicted concentration profiles at x/L=0.5 for selected schemes 

with the exact solution. The figures reveals that the CDS and Superbee schemes show 

closest agreement with the exact solution, although the CDS produces non-physical 

under- and overshoots. 

 

 

Figure 10.2: Diagonal Scalar Convection: Concentration 

Profiles at X/L=0.5. 
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N102: 2D Laminar Wall-Driven Cavity: This case considers 2d steady, 

incompressible, laminar recirculating flow inside a lid-driven cavity. The geometry is 

a 1m square cavity with no inflow or outflow. The flow is driven by a moving wall of 

-1m/s at the top of cavity. The Reynolds number based on cavity height is 1000. 

Calculations are performed with 3 linear schemes (CUS, UDS or QUICK) or 2 non-

linear schemes (Koren or MUSCL). This case is a widely-used test problem for 

assessing the accuracy and stability of various numerical methods. It serves as a useful 

test case owing to the substantial skewness of the flow streamlines relative to the 

Cartesian mesh. The numerical results of Ghia et al (1982) for Re=100, 400, 1000, 

3200 and 5000 are used by researchers as benchmark solutions. 

 

For Re=1000, Figure 10.3 compares the horizontal velocity profiles at mid-cavity 

width with the exact of solution of Ghia et al (1982) on a relatively coarse mesh of 21 

by 21 cells. The results show that the CUS gives the best and reasonably close 

agreement with the numerical data. The UDS produces a very diffusive solution, and 

consequently severely underestimates the peak value of the horizontal velocity. 

 

 

Figure 10.3: Laminar Wall-Driven Cavity: Horizontal Velocity 

Profiles at Mid-Cavity Width 

 

 

N103: 2D Laminar Backward-Facing Step: The case considered is 2d steady 

incompressible, laminar backward-facing-step flow, i.e. flow through a straight 

channel having a sudden asymmetric expansion. The flow is characterised by the step 

height H and the Reynolds number Re, which is based on the bulk inlet velocity and 

2h, where h is the flow inlet height. The channel expansion ratio is 1.94, and the total 

length of the domain is 40H. A fully-developed parabolic velocity profile is  

prescribed at the inlet boundary located at the step.  
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This test problem is widely used for assessing the accuracy of numerical methods 

because of the dependence of the reattachment lengths X on Re. The flow has been 

studied experimentally by Armaly et al (1983), and numerically in several papers (see 

for example, Gartling (1990), Freitas (1995) and Gresho et al (1993)). 

  

Calculations are made on a mesh of 32 by 200 cells for comparison with Armaly's data 

at Re=150 and Re=450 using the HDS, CUS and the Van Albada scheme. At Re=150, 

a primary recirculation zone develops immediately downstream of the step with 

X1/H=5.0. At Re=450, X1/H=9.5 and an additional separation cell forms on the upper 

wall of the channel. The measurements indicate that the separation point of this cell is 

located at X2/H=7.6 and the reattachment point at X3/H=11.3, yielding a cell length of 

dX/H=3.7. The main results of the calculations are summarised below and compared 

with the measurements: 
  

Re=150 Data Hybrid Cubic Upwind Van Albada 

X1/H 4.2 4.17 4.24 4.25 

Re=450 Data Hybrid Cubic Upwind Van Albada 

X1/H 9.5 8.79 9.13 9.06 

X2/H 7.6 7.66 8.26 8.09 

X3/H 11.3 11.14 11.39 11.52 

dX/H 3.7 3.48 3.13 3.43 

 

 

Although no grid-refinement studies have been performed, the results are in fairly 

good agreement with the data. In fact, the results are better than those reported by 

Freitas(1995) for other general-purpose codes. The measurements indicate that for 

Re>450, 3d effects become significant, and for Re >6,600 the flow is 2d and fully 

turbulent. 

 

N104: 2D Scalar Convection with Recirculation: The problem considered is pure 

2d convection of scalar step in a prescribed recirculating velocity field. The flow 

geometry is a rectangular domain of 2 units length (x) and unit height (y). The flow 

enters through the inlet in the range x=(-1,0), and then circulates clockwise through 

180 degrees to exit in the range x=(0,1). At the inlet, the scalar C=0 for x in the range 

(-1,-0.5)  and C=1 in the range (0,1). Since physical diffusion is absent, this step 

change should be convected by the recirculating flow so as to appear as a step change 

at the outlet; thus, the exact solution is C=1 for x in the range (0,0.5) and C=0 for x in 

the range (0.5,1). The example compares the solution for 6 different linear schemes 

and 9 non-linear schemes.   

 

This test case was devised by Smith and Hutton (1982) so as to provide a searching  

test of numerical convection schemes, especially for schemes based on 1d 

considerations. The velocity field is prescribed as shown in Figure 10.4 and is given 

by: U = 2*y*(1-x2)  and  V = -2*x*(1-y2) with x in the range (-1,+1) and y in the range 

(0,1). 
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Figure 10.4: Recirculating Scalar Convection: Velocity Field 

 

Figures 10.5 and 10.6 compare predictions on a 20 by 20 mesh for selected schemes 

with the exact solution for the outlet concentration profile. Figure 10.5 presents results 

for linear schemes, whereas Figure 10.6 shows results obtained with non-linear 

schemes. The UDS is too diffusive and all the linear higher-order schemes produce 

non-physical over- and undershoots. The Superbee schemes fares best of the selected 

non-linear schemes and produces reasonable agreement with the exact solution. 

 

 

Figure 10.5: Recirculating Scalar Convection: Concentration Outlet 

Profiles using Linear Schemes 
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Figure 10.6: Recirculating Scalar Convection: Concentration Outlet 

Profiles using Non-Linear Schemes 

 

Figure 10.7 compares the contours of scalar concentration produced by the UDS and 

Superbee schemes. This figure clearly shows the superiority of the Superbee scheme.  

 

Figure 10.7: Recirculating Scalar Convection: Concentration 

Contours for the UDS and Superbee Scheme. 

 

 

N105: 2D Turbulent Backward-Facing Step:  The problem considered is 2d steady 

turbulent flow over a backward facing step, as studied experimentally Moss et al 

(1977). The Reynolds number based on step height H is 5.104 and the expansion ratio  

is 1.1. The inlet is specified as a uniform inflow located 12H upstream of the step. The 

outlet plane is located 30H downstream of the step. The simulation uses QUICK for 

the velocities, and Koren's bounded scheme for the turbulence variables. 

  

The configuration is similar to that of Kim et al (1980), as studied numerically 

throughout the PHOENICS Library (see e.g. library cases T103 &T305) and by many 
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others (see for example Thangam & Speziale (1992)). The present geometry has a 

smaller expansion ratio and slightly higher Reynolds number. 
  

The measured reattachment length for this case is Xr/H=5.5, as measured from the 

step. The default computation using higher-order differencing schemes predicts a 

reattachment length of Xr/H=4.74. The PHOENICS default of HDS predicts 

Xr/H=4.43. A mesh of 30 vertical by 65 horizontal cells has been used in the 

calculations. 

 

N108: 2D Laminar Flow over a Fence: The case considered is 2d laminar 

incompressible flow over a thin fence of height H located in a planar channel with a  

blockage ratio S/H=0.75. The flow Reynolds number is 82.5 based on fence height S 

and inlet bulk velocity Uin. This situation has been studied experimentally and 

numerically by Carvalho et al (1987). The inlet conditions employ a fully-developed 

parabolic velocity profile located 8 fence heights upstream of the fence, and an outlet 

condition of fixed pressure is applied 15 fence heights downstream of the fence. In 

practice the fence thickness is t/H=0.133, but in the calculations it is taken as zero. 

  

The calculation is performed in all six planes as a consistency test, and computations 

are made with both the LUS and HDS for momentum. A mesh of 24 vertical by 48 

horizontal cells has been used in the calculations. 

 

Experiments indicate that a primary recirculation zone develops behind the fence with 

a reattachment length of X1/S=4.4, as measured from the fence. An additional 

separation cell forms on the upper wall of the channel with the separation point 

located at X2/S=4.0 and the reattachment point at X3/S=6.0, yielding a separation 

length of dX/S=2.0. The main results are summarised  in the table below: 

   

 Data HDS LUS 

X1/s 4.4 5.56 4.96 

X2/s 4.0 4.21 3.85 

X3/s 6.0 6.72 8.62 

dX/s 2.0 2.51 4.77 
 

Although no grid-refinement studies have been performed, the results are in 

reasonable agreement with the data. 

 

N110: 2D Turbulent Flow through an Orifice: The case considered is 2d turbulent 

axisymmetric incompressible flow through an orifice plate of 11mm thickness located 

in a pipe. The pipe diameter D is 92mm and the hole in the orifice plate has a diameter 

H of 64 mm. The flow Reynolds number is 75,000 based on D and the inlet bulk 

velocity Uin. The orifice  plate has practical value as a flowmeter. 

  

The present case has been studied experimentally and numerically by Erdal (1997). 

The boundary conditions correspond to an inlet flow of fully-developed turbulent flow 

located 10D upstream of the plate, and an outlet condition of fixed pressure 17.5D 

downstream of the plate, and no-slip conditions at the walls. Turbulence is represented 

via the standard k- model plus wall functions, the LUS is used for momentum and 

the van-Leer harmonic scheme for k and . 
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The calculation employs 85 axial grid cells, of which 16 are located within the orifice 

plate, 31 upstream and 38 downsteam of the plate. The solution is known to be 

sensitive to the grid spacing in the vicinity of the upstream edge of the orifice plate,  

and grid independence is not accomplished with the current mesh. In particular, the 

recirculation zone within the orifice requires greater resolution in order to model 

accurately the radial extent of the vena contracta, and hence the pressure drop across 

the orifice plate. The measured pressure drop across the whole domain is 430 Pa, 

whereas the hybrid scheme predicts 322 Pa and the LUS yields 372 Pa. 

 

N111: 1D Shock-Free Transonic Nozzle Flow: This case concerns steady 1d 

inviscid transonic flow through a Laval nozzle. The nozzle geometry is designed to 

produce a linear distribution of the Mach number M under shock-free conditions (see 

Malin [1977]). The flow is asymmetric about the throat with subsonic axial inflow and 

supersonic outflow. The dimensionless nozzle length is X=3 and the throat area is 

unity. The inlet conditions are prescribed total pressure Po and total temperature To at 

M=0.5. The design outlet Mach number is 2.0, for which the exit pressure is 0.1278 

Po. This case serves mainly to verify the implementation of the schemes for 

compressible flow.  

 

Computations are made with the UDS and the bounded higher-order UMIST scheme. 

So as to allow a direct computation of dimensionless flow variables, the flow 

equations are normalised such that the flow variables can be interpreted as: P/Po; /o; 

T/To; and U*()/ao. Here, ao is the acoustic velocity at To (see Palacio et al [1990] ). 

 

The results are not shown here, but both sets of results agree with the analytical 

solution.  For shock-free flow the UMIST scheme offers no advantage over the UDS. 

  

N112: 1D Shocked Transonic Nozzle Flow:  This case is the same case as N111, but 

with a back pressure of 0.744Po, implying a normal shock at X=2.4. Compressibility 

corrections to the PHOENICS momentum equations are used so as to obtain 

acceptable shock predictions (see Malin & Sanchez [1988]). For this case PHOENICS 

without these corrections produces a shock at the exit plane because the in-line 

convection flux in the momentum equation uses an averaged density rather than the 

upwind density. If the upwind density were used, as in  GXHOCS, the shock would be 

predicted somewhat down of its physical location. The compressibility corrections 

arrange that this flux is computed by averaging the continuity fluxes, thereby ensuring 

that the shock is predicted in the correct location. 

 

The numerical and analytical data are compared in Figure 10.8 in terms of the axial 

distribution of static pressure. The results show that the higher-order UMIST scheme 

produces a much sharper shock than the UDS. 
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Figure 10.8: Shocked Transonic Nozzle Flow: Static Pressure Distribution 

 

 

N113: 2D Transonic Underexpanded Jet: The problem considered is an 

axisymmetric sonic jet discharging into stagnant surroundings from a nozzle at a 

pressure 3.56 times higher than the ambient pressure. The stagnation enthalpy of the 

nozzle fluid is equal to that of the free stream, so that with the assumption of unit 

Prandtl numbers the energy equation need not be solved. The turbulence is represented 

by means of the k- turbulence model. Calculations are made with the HDS and the 

van-Leer MUSCL scheme. A relatively coarse mesh of 40 radial by 150 axial cells is 

used in the computations. This case was studied experimentally by Donaldson and 

Snedeker [1971] and numerically by Palacio et al [1990] . 

 

The measurements and predictions are compared in Figure 10.9 in terms of the axial 

distribution of Mach number along the flow axis. The flow shows a rapid initial 

expansion of the nozzle fluid, with the experiments indicating Mach-disc formation at 

z/D=1.54 with a Mach number of 3.5 just upstream of the disc and a Mach number of 

0.5 just downstream of the disc. Figure 10.9 shows that the MUSCL and HDS 

predictions reproduce the measurements fairly well, with the MUSCL scheme faring 

best  and producing a sharper shock front. It is evident that a finer mesh is required to 

improve the accuracy of the predictions. 
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Figure 10.9: Transonic Underexpanded Jet: Mach Number Distribution 

 

N114: 2D Bluff-Body Stabilised Methane Jet: The case considered is 2d steady, 

axisymmetric, turbulent non-reacting flow behind a bluff-body flame holder. The flow 

configuration consists of a 5.4mm diameter methane jet separated from an outer, 

annular air flow by a 50mm diameter bluff body. The flow is characterised by reverse 

flow in the annular air stream and exhibits well-defined fuel and annular air stagnation 

points along the centre-line. This case has been studied experimentally by Schefer et 

al (1987]) and was the subject of an ASCF Ercoftac CFD Workshop(see Garreton and 

Simonin (1994) ). 

  

The measured fuel stagnation point is located 38.7mm downstream of the body while 

the air stagnation point occurs at about 63mm. The table below compares these 

experimental values with those computed using the HDS and the non-linear OSPRE 

scheme. 

 

 HDS Predictions OSPRE Predictions Measurements 

Fuel Xstag  25.70 mm 27.70 mm 38.70 mm 

Air Xstag  57.60 mm 59.50 mm 63.00 mm 

 

These results support the findings of other workers ( see for example McGuirk et al 

[1985] and Durao et al [1991] ), namely that: the problem requires very high 
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computational resolution for numerical accuracy; and like for other disk-related 

predictions, the standard k- model underestimates the size of the recirculation zone, 

and hence the location of the first stagnation point. The OPSRE scheme offers 

marginal improvement over the HDS. 

 

The computation of the near field of these type of flows are known to be sensitive to 

the inlet conditions, and no assessment has been made in the present study on the 

influence of inlet values. In addition, no grid refinement studies have been carried out. 

 

11.CONCLUSIONS 

 

This paper has described development work conducted in 1995 to provide 

PHOENICS V2.2 and later releases with an extensive set of higher order schemes. 

The schemes comprised 5 linear and 12 non-linear schemes. Some successful 

applications of these schemes were described and placed in the PHOENICS Input 

Library and Applications Album. 

 

More development needs to be done, including: extensions to include the volume-

fraction variables R1, R2 and RS, and the energy variables TEM1 and TEM2; 

extensions to handle cells adjacent to external and internal boundaries; and the 

unification of these schemes with those currently provided for the co-located multi-

block CCM and GCV options. 
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